Big Data: Data is the new oil.

Big data is a broad term for data sets so large or complex that traditional data processing applications are inadequate. Challenges include analysis, capture, data curation, search, sharing, storage, transfer, visualization, and information privacy. The term often refers simply to the use of predictive analytics or other certain advanced methods to extract value from data, and seldom to a particular size of data set. Accuracy in big data may lead to more confident decision making. And better decisions can mean greater operational efficiency, cost reduction and reduced risk.

What is big data analytics?

Big data analytics is the process of examining big data to uncover hidden patterns, unknown correlations and other useful information that can be used to make better decisions. With big data analytics, data scientists and others can analyze huge volumes of data that conventional analytics and business intelligence solutions can't touch. Consider that your organization could accumulate (if it hasn't already) billions of rows of data with hundreds of millions of data combinations in multiple data stores and abundant formats. High-performance analytics is necessary to process that much data in order to figure out what's important and what isn't. Enter big data analytics.

Why collect and store terabytes of data if you can't analyze it in full context? Or if you have to wait hours or days to get results? With new advances in computing technology, there's no need to avoid tackling even the most challenging business problems. For simpler and faster processing of only relevant data, you can use high-performance analytics. Using high-performance data mining, predictive analytics, text mining, forecasting and optimization on big data enables you to continuously drive innovation and make the best possible decisions. In addition, organizations are discovering that the unique properties of machine learning are ideally suited to addressing their fast-paced big data needs in new ways.

Why is big data analytics important?

For years SAS customers have evolved their analytics methods from a reactive view into a proactive approach using predictive and prescriptive analytics. Both reactive and proactive approaches are used by organizations, but let's look closely at what is best for your organization and task at hand.

Reactive vs. proactive approaches
There are four approaches to analytics, and each falls within the reactive or proactive category:

Reactive – business intelligence. In the reactive category, business intelligence (BI) provides standard business reports, ad hoc reports, OLAP and even alerts and notifications based on analytics. This ad hoc analysis looks at the static past, which has its purpose in a limited number of situations.

Reactive – big data BI. When reporting pulls from huge data sets, we can say this is performing big data BI. But decisions based on these two methods are still reactionary.

Proactive – big analytics. Making forward-looking, proactive decisions requires proactive big analytics like optimization, predictive modeling, text mining, forecasting and statistical analysis. They allow you to identify trends, spot weaknesses or determine conditions for making decisions about the future. But although it's proactive, big analytics cannot be performed on big data because traditional storage environments and processing times cannot keep up.

Proactive – big data analytics. By using big data analytics you can extract only the relevant information from terabytes, petabytes and exabytes, and analyze it to transform your business decisions for the future. Becoming proactive with big data analytics isn't a one-time endeavor; it is more of a culture change – a new way of gaining ground by freeing your analysts and decision makers to meet the future with sound knowledge and insight.

The Challenges of Big Data Analytics:

For most organizations, big data analysis is a challenge. Consider the sheer volume of data and the different formats of the data (both structured and unstructured data) that is collected across the entire organization and the many different ways different types of data can be combined, contrasted and analyzed to find patterns and other useful business information.
The first challenge is in breaking down data silos to access all data an organization stores in different places and often in different systems. A second big data challenge is in creating platforms that can pull in unstructured data as easily as structured data. This massive volume of data is typically so large that it's difficult to process using traditional database and software methods.
Big Data Requires High-Performance Analytics
To analyze such a large volume of data, big data analytics is typically performed using specialized software tools and applications for predictive analytics, data mining, text mining, forecasting and data optimization. Collectively these processes are separate but highly integrated functions of high-performance analytics. Using big data tools and software enables an organization to process extremely large volumes of data that a business has collected to determine which data is relevant and can be analyzed to drive better business decisions in the future.

Examples of How Big Data Analytics is Used Today

As the technology that helps an organization to break down data silos and analyze data improves, business can be transformed in all sorts of ways. According to Datamation, today's advances in analyzing Big Data allow researchers to decode human DNA in minutes, predict where terrorists plan to attack, determine which gene is mostly likely to be responsible for certain diseases and, of course, which ads you are most likely to respond to on Facebook.
The business cases for leveraging Big Data are compelling. For instance, Netflix mined its subscriber data to put the essential ingredients together for its recent hit House of Cards, and subscriber data also prompted the company to bring Arrested Development back from the dead.
Another example comes from one of the biggest mobile carriers in the world. France's Orange launched its Data for Development project by releasing subscriber data for customers in the Ivory Coast. The 2.5 billion records, which were made anonymous, included details on calls and text messages exchanged between 5 million users. Researchers accessed the data and sent Orange proposals for how the data could serve as the foundation for development projects to improve public health and safety. Proposed projects included one that showed how to improve public safety by tracking cell phone data to map where people went after emergencies; another showed how to use cellular data for disease containment.

Benefits of Big Data Analytics:

Enterprises are increasingly looking to find actionable insights into their data. Many big data projects originate from the need to answer specific business questions. With the right big data analytics platforms in place, an enterprise can boost sales, increase efficiency, and improve operations, customer service and risk management.
Webopedia parent company, QuinStreet, surveyed 540 enterprise decision-makers involved in big data purchases to learn which business areas companies plan to use Big Data analytics to improve operations. About half of all respondents said they were applying big data analytics to improve customer retention, help with product development and gain a competitive advantage.

Notably, the business area getting the most attention relates to increasing efficiencies and optimizing operations. Specifically, 62 percent of respondents said that they use big data analytics to improve speed and reduce complexity.

Popular posts from this blog

The incredible Oculus Rift.

Android 6.0 Marshmallow: Features. What's new?

Startups v/s MNC : Truth!